Scaffold-Hopped Compound Identification by Ligand-Based Approaches with a Prospective Affinity Test

通过基于配体的方法和前瞻性亲和力测试进行骨架跳跃化合物鉴定

阅读:11
作者:Itsuki Maeda, Shunsuke Tamura, Yoshihiro Ogura, Takayuki Serizawa, Takashi Shimada, Ryo Kunimoto, Tomoyuki Miyao

Abstract

Scaffold-hopped (SH) compounds are bioactive compounds structurally different from known active compounds. Identifying SH compounds in the ligand-based approaches has been a central issue in medicinal chemistry, and various molecular representations of scaffold hopping have been proposed. However, appropriate representations for SH compound identification remain unclear. Herein, the ability of SH compound identification among several representations was fairly evaluated based on retrospective validation and prospective demonstration. In the retrospective validation, the combinations of two screening algorithms and four two- and three-dimensional molecular representations were compared using controlled data sets for the early identification of SH compounds. We found that the combination of the support vector machine and extended connectivity fingerprint with bond diameter 4 (SVM-ECFP4) and SVM and the rapid overlay of chemical structures (SVM-ROCS) showed a relatively high performance. The compounds that were highly ranked by SVM-ROCS did not share substructures with the active training compounds, while those ranked by SVM-ECFP4 were mostly recombinant. In the prospective demonstration, 93 SH compounds were prepared by screening the Namiki database using SVM-ROCS, targeting ABL1 inhibitors. The primary screening using surface plasmon resonance suggested five active compounds; however, in the competitive binding assays with adenosine triphosphate, no hits were found.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。