FOXP1-induced lncRNA CLRN1-AS1 acts as a tumor suppressor in pituitary prolactinoma by repressing the autophagy via inactivating Wnt/β-catenin signaling pathway

FOXP1 诱导的 lncRNA CLRN1-AS1 通过抑制 Wnt/β-catenin 信号通路抑制自噬,在垂体催乳素瘤中发挥抑癌作用

阅读:7
作者:Chao Wang, Chunlei Tan, Yuan Wen, Dongzhi Zhang, Guofu Li, Liang Chang, Jun Su, Xin Wang

Abstract

As the commonest type of functional pituitary tumor, prolactinoma takes up around 40-60% of functional pituitary tumors. Despite dedications attributed to the treatment of prolactinoma, complete cure remains difficult. Hence, it is of significance to bring to light the underlying mechanism of prolactinoma. Long noncoding RNAs (lncRNAs) are a group of transcripts which can regulate various biological processes. In the present study, we explored an lncRNA that was differentially downregulated in prolactinoma samples. LncRNA clarin 1 antisense RNA 1 (CLRN1-AS1) was downregulated in 42 patient samples and inactivated the Wnt/β-catenin signaling pathway. Functionally, CLRN1-AS1 suppressed cell proliferation, promoted apoptosis, and inhibited autophagy. Subcellular fractionation assay revealed that CLRN1-AS1 was located in the cytoplasm of prolactinoma cells. Based on bioinformatics analysis and mechanism experiments, we determined that CLRN1-AS1 acted as a competing endogenous RNA (ceRNA) by sponging miR-217 to upregulate the dickkopf WNT signaling pathway inhibitor 1 (DKK1). Furthermore, Forkhead box P1 (FOXP1) was verified to be a transcription suppressor of CLRN1-AS1. In summary, this study revealed that FOXP1-induced CLRN1-AS1 regulated cellular functions in pituitary prolactinoma by sponging miR-217 to release the DKK1/Wnt/β-catenin signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。