Determination of the ex vivo rates of human immunodeficiency virus type 1 reverse transcription by using novel strand-specific amplification analysis

使用新型链特异性扩增分析法测定人类免疫缺陷病毒 1 型逆转录的体外速率

阅读:8
作者:David C Thomas, Yegor A Voronin, Galina N Nikolenko, Jianbo Chen, Wei-Shau Hu, Vinay K Pathak

Abstract

Replication of human immunodeficiency virus type 1 (HIV-1), like all organisms, involves synthesis of a minus-strand and a plus-strand of nucleic acid. Currently available PCR methods cannot distinguish between the two strands of nucleic acids. To carry out detailed analysis of HIV-1 reverse transcription from infected cells, we have developed a novel strand-specific amplification (SSA) assay using single-stranded padlock probes that are specifically hybridized to a target strand, ligated, and quantified for sensitive analysis of the kinetics of HIV-1 reverse transcription in cells. Using SSA, we have determined for the first time the ex vivo rates of HIV-1 minus-strand DNA synthesis in 293T and human primary CD4(+) T cells ( approximately 68 to 70 nucleotides/min). We also determined the rates of minus-strand DNA transfer ( approximately 4 min), plus-strand DNA transfer ( approximately 26 min), and initiation of plus-strand DNA synthesis ( approximately 9 min) in 293T cells. Additionally, our results indicate that plus-strand DNA synthesis is initiated at multiple sites and that several reverse transcriptase inhibitors influence the kinetics of minus-strand DNA synthesis differently, providing insights into their mechanism of inhibition. The SSA technology provides a novel approach to analyzing DNA replication processes and should facilitate the development of new antiretroviral drugs that target specific steps in HIV-1 reverse transcription.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。