Tumor Microenvironment Modulates Immunological Outcomes of Myeloid Cells with mTORC1 Disruption

肿瘤微环境通过 mTORC1 破坏调节髓系细胞的免疫结果

阅读:5
作者:Chuanlin Ding, Xiaomin Sun, Caijun Wu, Xiaoling Hu, Huang-Ge Zhang, Jun Yan

Abstract

The role of the mTOR signaling pathway in different myeloid cell subsets is poorly understood in the context of tumor development. In this study, myeloid cell-specific Raptor knockout (KO) mice were used to determine the roles of mechanistic target of rapamycin complex 1 (mTORC1) in regulating macrophage function from Lewis lung carcinoma (LLC) s.c. tumors and lung tumor metastasis. We found no difference in tumor growth between conditional Raptor KO and control mice in the s.c. tumor models, although depletion of mTORC1 decreased the immunosuppressive function of tumor-associated macrophages (TAM). Despite the decreased immunosuppressive activity of TAM, M1-like TAM differentiation was impaired in the s.c. tumor microenvironment of mTORC1 conditional Raptor KO mice due to downregulated CD115 expression on macrophages. In addition, TNF-α production by mTORC1-deficient myeloid cells was also decreased in the s.c. LLC tumors. On the contrary, disruption of mTORC1 in myeloid cells promoted lung cancer metastasis. Accordingly, immunosuppressive interstitial macrophages/metastasis-associated macrophages (CD11b+F4/80high) were accumulated in the lungs of Raptor KO mice in the LLC lung metastasis model, leading to decreased Th1 responses. Taken together, our results demonstrate that differential tumor microenvironment dictates the immunological outcomes of myeloid cells, with mTORC1 disruption leading to different tumor growth phenotypes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。