Inhibition of thyroid hormone signaling protects retinal pigment epithelium and photoreceptors from cell death in a mouse model of age-related macular degeneration

在年龄相关性黄斑变性的小鼠模型中,抑制甲状腺激素信号可保护视网膜色素上皮和光感受器免于细胞死亡

阅读:6
作者:Hongwei Ma, Fan Yang, Xi-Qin Ding

Abstract

Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Dry AMD is characterized by a progressive macular degeneration of the retinal pigment epithelium (RPE) and photoreceptors, and the RPE oxidative damage/dystrophy is at the core of the disease. Recent population/patients-based studies have shown an association of high free serum thyroid hormone (TH) levels with increased risk of AMD. This work investigated the effects of TH signaling inhibition on RPE and photoreceptor damage/cell death in an oxidative stress-induced mouse model of AMD. TH signaling inhibition was achieved by anti-thyroid drug treatment and oxidative stress was induced by sodium iodate (NaIO3) administration. Mice treated with NaIO3 showed severe RPE and photoreceptor cell death/necroptosis, destruction, oxidative damage, retinal stress, and reduced retinal function. Treatment with anti-thyroid drug protected RPE and photoreceptors from damage/cell death induced by NaIO3, reduced oxidative damage of RPE and photoreceptors, and preserved retinal function. Gene expression analysis showed that the NaIO3-induced RPE/photoreceptor damage/cell death involves multiple mechanisms, including cellular oxidative stress responses, activation of necroptosis/apoptosis signaling, and inflammatory responses. Treatment with anti-thyroid drug abolished these cellular stress/death responses. The findings of this study demonstrate a role of TH signaling in RPE and photoreceptor cell death after oxidative stress challenge, and support a role of TH signaling in the pathogenesis of AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。