Cell type-specific expression and function of toll-like receptors 2 and 4 in human placenta: implications in fetal infection

人胎盘中 Toll 样受体 2 和 4 的细胞类型特异性表达和功能:对胎儿感染的影响

阅读:6
作者:Y Ma, G Krikun, V M Abrahams, G Mor, S Guller

Abstract

Placental infection is associated with adverse fetal outcomes. Toll-like receptors (TLRs) are critical regulators of the innate immune response based on their ability to recognize and respond to pathogen-associated molecular patterns expressed by microbes. To date, cell-type specific expression and regulation of TLR function in human term placenta remains largely unelucidated. The goal of the current study was to examine the in vivo and in vitro patterns of TLR expression and function in major cell types of term placenta. Immunohistochemical analysis of terminal and stem villi localized TLR-2, which recognizes peptidoglycan (PG) from Gram-positive bacteria, to endothelial cells and macrophages, and to a lesser extent to syncytiotrophoblast (SCTs) and fibroblasts (FIBs). Staining for TLR-4, the receptor for Gram-negative bacterial lipopolysaccharide (LPS), was most prominent in SCTs and endothelial cells. Results from Western blotting, conventional, and quantitative PCR (qRTPCR) analyses using protein and mRNA isolated from cultures of SCTs and myofibroblasts (mFIBs) revealed that SCTs expressed TLR-2 and TLR-4, whereas mFIBs expressed only TLR-4. In addition, qRTPCR showed that LPS treatment increased TLR-2 expression in SCTs, indicating that infection with Gram-negative bacteria may enhance innate immune responses in placenta toward a broad range of microorganisms. In addition, treatment with LPS increased IL-8 levels in both SCTs and mFIBs, whereas PG treatment only stimulated IL-8 levels in SCTs. Our results indicate that there exist cell type-specific patterns of TLR function in placenta which likely regulate innate immune response at the maternal-fetal interface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。