Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases

哺乳动物转录组中不同的内切酶切位点依赖于microRNA、Drosha和其他核酸酶

阅读:13
作者:Fedor V Karginov, Sihem Cheloufi, Mark M W Chong, Alexander Stark, Andrew D Smith, Gregory J Hannon

Abstract

The life span of a mammalian mRNA is determined, in part, by the binding of regulatory proteins and small RNA-guided complexes. The conserved endonuclease activity of Argonaute2 requires extensive complementarity between a small RNA and its target and is not used by animal microRNAs, which pair with their targets imperfectly. Here we investigate the endonucleolytic function of Ago2 and other nucleases by transcriptome-wide profiling of mRNA cleavage products retaining 5' phosphate groups in mouse embryonic stem cells (mESCs). We detect a prominent signature of Ago2-dependent cleavage events and validate several such targets. Unexpectedly, a broader class of Ago2-independent cleavage sites is also observed, indicating participation of additional nucleases in site-specific mRNA cleavage. Within this class, we identify a cohort of Drosha-dependent mRNA cleavage events that functionally regulate mRNA levels in mESCs, including one in the Dgcr8 mRNA. Together, these results highlight the underappreciated role of endonucleolytic cleavage in controlling mRNA fates in mammals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。