Enzyme-mediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria

嗜热菌酶介导的长链正构烷(C32 和 C40)生物降解

阅读:6
作者:Punniyakotti Elumalai, Punniyakotti Parthipan, Obulisamy Parthiba Karthikeyan, Aruliah Rajasekar

Abstract

Removal of long-chain hydrocarbons and n-alkanes from oil-contaminated environments are mere important to reduce the ecological damages, while bio-augmentation is a very promising technology that requires highly efficient microbes. In present study, the efficiency of pure isolates, i.e., Geobacillus thermoparaffinivorans IR2, Geobacillus stearothermophillus IR4 and Bacillus licheniformis MN6 and mixed consortium on degradation of long-chain n-alkanes C32 and C40 was investigated by batch cultivation test. Biodegradation efficiencies were found high for C32 by mixed consortium (90%) than pure strains, while the pure strains were better in degradation of C40 than mixed consortium (87%). In contrast, the maximum alkane hydroxylase activities (161 µmol mg-1 protein) were recorded in mixed consortium system that had supplied with C40 as sole carbon source. Also, the alcohol dehydrogenase (71 µmol mg-1 protein) and lipase activity (57 µmol mg-1 protein) were found high. Along with the enzyme activities, the hydrophobicity natures of the bacterial strains were found to determine the degradation efficiency of the hydrocarbons. Thus, the study suggested that the hydrophobicity of the bacteria is a critical parameter to understand the biodegradation of n-alkanes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。