Emodin improves the cardiac function in the rats with chronic heart failure through regulation of the miR-26b-5p/PTEN pathway

大黄素通过调控 miR-26b-5p/PTEN 通路改善慢性心力衰竭大鼠的心脏功能

阅读:6
作者:Zuncai Gu, Shuhua Zhang, Siyuan Zhao, Ying Cui, Liming Sun

Conclusions

All the results indicated that emodin serves a protective role in CHF via regulation of the miR-26b-5p/PTEN pathway. Emodin may be an effective therapeutic agent for CHF treatment.

Material and methods

A total of 56 Wistar rats were used to construct CHF model using the coronary artery ligation. The effects of emodin on cardiac function and inflammation were analyzed in the CHF rats. Expression of miR-26b-5p in the CHF model before and after emodin treatment was estimated by quantitative real-time polymerase chain reaction. The effects of miR-26b-5p on cardiac function and inflammation were also assessed, and its target gene was predicted and confirmed in rat cardiomyocyte H9c2.

Methods

A total of 56 Wistar rats were used to construct CHF model using the coronary artery ligation. The effects of emodin on cardiac function and inflammation were analyzed in the CHF rats. Expression of miR-26b-5p in the CHF model before and after emodin treatment was estimated by quantitative real-time polymerase chain reaction. The effects of miR-26b-5p on cardiac function and inflammation were also assessed, and its target gene was predicted and confirmed in rat cardiomyocyte H9c2.

Results

Emodin treatment could significant improve the cardiac function and inflammation evidenced by the increased increased ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP) and maximum of the first differentiation of left ventricular pressure (+LV dP/dtmax) and decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), left ventricular end diastolic pressure (LVEDP), interleukin (IL)-6, tumor necrosis factor α (TNF-α) levels. Expression of miR-26b-5p was downregulated in the CHF rats (CHF 0.442 ±0.131 vs. Sham 1.044 ±0.160), and this suppressive effect was rescued by emodin (Emodin 0.902 ±0.132 vs. CHF 0.442 ±0.131). The overexpression of miR-26b-5p in CHF rats led to improved cardiac function and inflammatory response. In addition, the emodin-induced increased EF, FS, LVSP and +LV dP/dtmax and decreased ANP, BNP, LVEDP, IL-6 and TNF-α were all abrogated by the knockdown of miR-26b-5p. The target prediction results revealed that PTEN was a target gene of miR-26b-5p in H9c2 cells. Conclusions: All the results indicated that emodin serves a protective role in CHF via regulation of the miR-26b-5p/PTEN pathway. Emodin may be an effective therapeutic agent for CHF treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。