Cell-free protein expression systems in microdroplets: Stabilization of interdroplet bilayers

微滴中的无细胞蛋白质表达系统:液滴间双层的稳定性

阅读:4
作者:Mark S Friddin, Hywel Morgan, Maurits R R de Planque

Abstract

Cell-free protein expression with bacterial lysates has been demonstrated to produce soluble proteins in microdroplets. However, droplet assays with expressed membrane proteins require the presence of a lipid bilayer. A bilayer can be formed in between lipid-coated aqueous droplets by bringing these into contact by electrokinetic manipulation in a continuous oil phase, but it is not known whether such interdroplet bilayers are compatible with high concentrations of biomolecules. In this study, we have characterized the lifetime and the structural integrity of interdroplet bilayers by measuring the bilayer current in the presence of three different commercial cell-free expression mixtures and their individual components. Samples of pure proteins and of a polymer were included for comparison. It is shown that complete expression mixtures reduce the bilayer lifetime to several minutes or less, and that this is mainly due to the lysate fraction itself. The fraction that contains the molecules for metabolic energy generation does not reduce the bilayer lifetime but does give rise to current steps that are indicative of lipid packing defects. Gel electrophoresis confirmed that proteins are only present at significant amounts in the lysate fractions and, when supplied separately, in the T7 enzyme mixture. Interestingly, it was also found that pure-protein and pure-polymer solutions perturb the interdroplet bilayer at higher concentrations; 10% (w/v) polyethylene glycol 8000 (PEG 8000) and 3 mM lysozyme induce large bilayer currents without a reduction in bilayer lifetime, whereas 3 mM albumin causes rapid bilayer failure. It can, therefore, be concluded that the high protein content of the lysates and the presence of PEG polymer, a typical lysate supplement, compromise the structural integrity of interdroplet bilayers. However, we established that the addition of lipid vesicles to the cell-free expression mixture stabilizes the interdroplet bilayer, allowing the exposure of interdroplet bilayers to cell-free expression solutions. Given that cell-free expressed membrane proteins can insert in lipid bilayers, we envisage that microdroplet technology may be extended to the study of in situ expressed membrane receptors and ion channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。