Maize ZmBES1/BZR1-5 Decreases ABA Sensitivity and Confers Tolerance to Osmotic Stress in Transgenic Arabidopsis

玉米 ZmBES1/BZR1-5 降低转基因拟南芥对脱落酸的敏感性并赋予其对渗透胁迫的耐受性

阅读:6
作者:Fuai Sun, Haoqiang Yu, Jingtao Qu, Yang Cao, Lei Ding, Wenqi Feng, Muhammad Hayder Bin Khalid, Wanchen Li, Fengling Fu

Abstract

The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors, key components in the brassinosteroid signaling pathway, play pivotal roles in plant growth and development. However, the function of BES1/BZR1 in crops during stress response remains poorly understood. In the present study, we characterized ZmBES1/BZR1-5 from maize, which was localized to the nucleus and was responsive to abscisic acid (ABA), salt and drought stresses. Heterologous expression of ZmBES1/BZR1-5 in transgenic Arabidopsis resulted in decreased ABA sensitivity, facilitated shoot growth and root development, and enhanced salt and drought tolerance with lower malondialdehyde (MDA) content and relative electrolyte leakage (REL) under osmotic stress. The RNA sequencing (RNA-seq) analysis revealed that 84 common differentially expressed genes (DEGs) were regulated by ZmBES1/BZR1-5 in transgenic Arabidopsis. Subsequently, gene ontology and KEGG pathway enrichment analyses showed that the DEGs were enriched in response to stress, secondary metabolism and metabolic pathways. Furthermore, 30 DEGs were assigned to stress response and possessed 2-15 E-box elements in their promoters, which could be potentially recognized and bound by ZmBES1/BZR1-5. Taken together, our results reveal that the ZmBES1/BZR1-5 transcription factor positively regulates salt and drought tolerance by binding to E-box to induce the expression of downstream stress-related genes. Therefore, our study contributes to the better understanding of BES1/BZR1 function in the stress response of plants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。