Sevoflurane protects against renal ischemia and reperfusion injury in mice via the transforming growth factor-beta1 pathway

七氟醚通过转化生长因子-β1通路保护小鼠肾脏缺血再灌注损伤

阅读:5
作者:H Thomas Lee, Sean W C Chen, Thomas C Doetschman, Chuxia Deng, Vivette D D'Agati, Mihwa Kim

Abstract

We previously demonstrated that several clinically utilized volatile anesthetics including sevoflurane protected against renal ischemia-reperfusion (IR) injury by reducing necrosis and inflammation in vivo. We also demonstrated that volatile anesthetics produced direct anti-necrotic and anti-inflammatory effects in cultured renal tubules via mechanisms involving the externalization of phosphatidylserine and subsequent release of transforming growth factor (TGF)-beta1. In this study, we tested the hypothesis that volatile anesthetic-mediated renal protection requires TGF-beta1 and SMAD3 signaling in vivo. We subjected TGF-beta1+/+, TGF-beta1+/-, SMAD3+/+, or SMAD3-/- mice to renal IR under anesthesia with pentobarbital sodium or with sevoflurane. Although TGF-beta1+/+ and SMAD3+/+ mice were significantly protected against renal IR injury under sevoflurane anesthesia with reduced necrosis and inflammation, TGF-beta1+/- mice and SMAD3-/- mice were not protected against renal IR with sevoflurane. Furthermore, a neutralizing TGF-beta1 antibody blocked renal protection with sevoflurane in TGF-beta1+/+ mice. Sevoflurane caused nuclear translocation of SMAD3 and reduced the TNF-alpha-induced nuclear translocation of NF-kappaB in primary cultures of proximal tubules from TGF-beta1+/+ but not in TGF-beta1+/- mice. Finally, sevoflurane protected against necrosis induced with hydrogen peroxide in primary cultures of proximal tubules from TGF-beta1+/+ mice or SMAD3+/+ mice but not in proximal tubules from TGF-beta1+/- or SMAD3-/- mice. Therefore, we demonstrate in this study that sevoflurane-mediated renal protection in vivo requires the TGF-beta1-->SMAD3 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。