Alisol A inhibits and stabilizes atherosclerotic plaques by protecting vascular endothelial cells

泽泻醇 A 通过保护血管内皮细胞抑制和稳定动脉粥样硬化斑块

阅读:6
作者:Yang Ma #, Dingzhong Song #, Jie Yuan #, Wusi Hao, Jianqiang Xi, Chunping Yuan, Zhihong Cheng

Aims

Dysfunction of endothelial cells represents a crucial aspect in the pathogenesis of atherosclerosis. The aim of this study was to explore the protective effects of alisol A on vascular endothelial cells and its possible mechanisms.

Background and aims

Dysfunction of endothelial cells represents a crucial aspect in the pathogenesis of atherosclerosis. The aim of this study was to explore the protective effects of alisol A on vascular endothelial cells and its possible mechanisms.

Conclusion

Alisol A produced protection on vascular endothelial cells, achieving inhibition and stabilization of atherosclerotic plaques.

Methods

An atherosclerosis model was established by feeding ApoE-/- mice with high-fat chow. Alisol A (150 mg/kg/d) or atorvastatin (15 mg/kg/d) was administered, and the levels of blood lipids were evaluated. The effect of the drugs on atherosclerotic plaques was observed by staining the aorta with Sudan IV. In vitro experiments were conducted using human aortic endothelial cells (HAECs) to assess the effects of alisol A on cell proliferation, migration, tubulation, secretion, and cellular integrity by CCK-8 assay, wound healing assay, angiogenesis assay, NO secretion, and release of LDH. Transcriptomics and molecular docking were used to explore the mechanism of plaque inhibition and stabilization by alisol A.

Results

Alisol A significantly reduced the aortic plaque area in ApoE-/- mice fed with high-fat chow. In vitro, alisol A had a protective effect on HAECs, which was reflected in the inhibition of vascular endothelial cell proliferation, promotion of NO secretion by vascular endothelial cells, inhibition of vascular endothelial cell migration and angiogenesis, and the maintenance of cell membrane integrity. Therefore, alisol A inhibited and stabilized atherosclerotic plaques and slowed down the process of atherosclerosis. Transcriptomics studies showed 4,086 differentially expressed genes (DEGs) in vascular endothelial cells after alisol A treatment. Enrichment analysis indicated that many genes involved in TNF signaling pathway were differentially expressed, and inflammatory genes were suppressed. The molecular docking results verified the hypothesis that alisol A has a low binding energy after docking with TNF target, and TNF could be a potential target of alisol A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。