MeCP2 dysfunction prevents proper BMP signaling and neural progenitor expansion in brain organoid

MeCP2 功能障碍会阻碍脑类器官中正确的 BMP 信号传导和神经祖细胞扩增

阅读:5
作者:Hyowon Hong, Sae-Bom Yoon, Jung Eun Park, Jung In Lee, Hyun Young Kim, Hye Jin Nam, Heeyeong Cho

Methods

We newly established the RTT brain organoid model derived from MeCP2-truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids.

Results

Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway-related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. Interpretation: Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。