Role of Sodium-Dependent Vitamin C Transporter-2 and Ascorbate in Regulating the Hypoxic Pathway in Cultured Glioblastoma Cells

钠依赖性维生素 C 转运蛋白-2 和抗坏血酸在调节培养胶质母细胞瘤细胞缺氧途径中的作用

阅读:24
作者:Eleanor R Burgess, Citra Praditi, Elisabeth Phillips, Margreet C M Vissers, Bridget A Robinson, Gabi U Dachs, George A R Wiggins

Abstract

The most common and aggressive brain cancer, glioblastoma, is characterized by hypoxia and poor survival. The pro-tumour transcription factor, hypoxia-inducible factor (HIF), is regulated via HIF-hydroxylases that require ascorbate as cofactor. Decreased HIF-hydroxylase activity triggers the hypoxic pathway driving cancer progression. Tissue ascorbate accumulates via the sodium-dependent vitamin C transporter-2 (SVCT2). We hypothesize that glioblastoma cells rely on SVCT2 for ascorbate accumulation, and that knockout of this transporter would disrupt the regulation of the hypoxic pathway by ascorbate. Ascorbate uptake was measured in glioblastoma cell lines (U87MG, U251MG, T98G) by high-performance liquid chromatography. CRISPR/Cas9 was used to knockout SVCT2. Cells were treated with cobalt chloride, desferrioxamine or 5% oxygen, with/without ascorbate, and key hypoxic pathway proteins were measured using Western blot analysis. Ascorbate uptake was cell line dependent, ranging from 1.7 to 11.0 nmol/106 cells. SVCT2-knockout cells accumulated 90%-95% less intracellular ascorbate than parental cells. The hypoxic pathway was induced by all three stimuli, and ascorbate reduced this induction. In the SVCT2-knockout cells, ascorbate had limited effect on the hypoxic pathway. This study verifies that intracellular ascorbate is required to suppress the hypoxic pathway. As patient survival is related to an activated hypoxic pathway, increasing intra-tumoral ascorbate may be of clinical interest.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。