Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition

长链非编码 RNA UCA1 靶向 miR-582-5p,通过 ATG7 介导的自噬抑制促进膀胱癌细胞的进展和耐药性

阅读:3
作者:Junfeng Wu, Wei Li, Jinzhuo Ning, Weimin Yu, Ting Rao, Fan Cheng

Background

Rently, the incidence of bladder cancer has been on the rise. Accumulating researches have been conducted to clarify the molecular mechanisms and potential therapeutic targets of bladder cancer. The present study aims to explore the regulatory mechanism of the urothelial carcinoma-associated 1 (UCA1)-miR-582-5p-ATG7 axis in bladder cancer.

Conclusion

These results provided evidence for a novel UCA1 interaction regulatory network in bladder cancer, that is, UCA1-miR-582-5p-ATG7-autophagy axis. Our study provides a new insight into the treatment of bladder cancer.

Methods

Quantitative real-time polymerase chain reaction was used to detect mRNA level. Relative protein expression was detected by western blot. wound healing assay and transwell were used to determine migration and invasion of cells. in addtion, luciferase reporter assay and immunohistochemistry were performed.

Results

UCA1 expression was upregulated in bladder cancer tissues and cells, while the depletion of UCA1 by shRNA resulted in the suppression of cell proliferation, invasion, migration, and drug resistance. Further studies demonstrated that UCA1 could directly interact with miR-582-5p, and that there was an inverse correlation between miR-582-5p and UCA1. In addition, we found that ATG7 is a target of miR-582-5p and can be downregulated by either miR-582-5p overexpression or UCA1 knockdown. In particular, the autophagy is reduced when UCA1 shRNA is introduced. Moreover, the in vivo experiment further demonstrated the contribution of UCA1 in bladder cancer including tumor growth, invasion, and migration, and UCA1 knockdown can inhibit the aforementioned activities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。