Structures of metabotropic GABAB receptor

代谢型 GABAB 受体的结构

阅读:3
作者:Makaía M Papasergi-Scott #, Michael J Robertson #, Alpay B Seven, Ouliana Panova, Jesper M Mathiesen, Georgios Skiniotis

Abstract

Stimulation of the metabotropic GABAB receptor by γ-aminobutyric acid (GABA) results in prolonged inhibition of neurotransmission, which is central to brain physiology1. GABAB belongs to family C of the G-protein-coupled receptors, which operate as dimers to transform synaptic neurotransmitter signals into a cellular response through the binding and activation of heterotrimeric G proteins2,3. However, GABAB is unique in its function as an obligate heterodimer in which agonist binding and G-protein activation take place on distinct subunits4,5. Here we present cryo-electron microscopy structures of heterodimeric and homodimeric full-length GABAB receptors. Complemented by cellular signalling assays and atomistic simulations, these structures reveal that extracellular loop 2 (ECL2) of GABAB has an essential role in relaying structural transitions by ordering the linker that connects the extracellular ligand-binding domain to the transmembrane region. Furthermore, the ECL2 of each of the subunits of GABAB caps and interacts with the hydrophilic head of a phospholipid that occupies the extracellular half of the transmembrane domain, thereby providing a potentially crucial link between ligand binding and the receptor core that engages G proteins. These results provide a starting framework through which to decipher the mechanistic modes of signal transduction mediated by GABAB dimers, and have important implications for rational drug design that targets these receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。