Inactivation of FOXO1 induces T follicular cell polarization and involves angioimmunoblastic T cell lymphoma

FOXO1失活诱导T滤泡细胞极化,并涉及血管免疫母细胞性T细胞淋巴瘤。

阅读:1
作者:Meifang Xu ,Fei Wang ,Hong Chen ,Lin Liu ,Wenwen Liu ,Yinghong Yang ,Qiaoling Zheng ,Lihong Zhang ,Xiaoxuan Li ,Suxia Lin ,Shengbing Zang

Abstract

Objective: Angioimmunoblastic T cell lymphoma (AITL) is an aggressive form of non-Hodgkin lymphoma derived from mature T cells. However, the underlying pathogenesis of AITL remains unresolved. We aimed to explore the role of FOXO1-mediated signaling in the tumorigenesis and progression of AITL. Methods: FOXO1 expression was assessed using immunohistochemistry on a total of 46 AITL tissue samples. Retroviruses encoding FOXO1 shRNA were used to knockdown FOXO1 expression in CD4+ T cells. Flow cytometric assays analyzed the proliferation and survival of FOXO1 knockdown CD4+ T cells. Furthermore, we performed adoptive T-cell transfer experiments to identify whether inactivation of FOXO1 induced neoplastic follicular-helper T (Tfh) cell polarization and function. Results: Patients with low FOXO1 protein levels were prone to have an advanced tumor stage (P = 0.049), higher ECOG ps (P = 0.024), the presence of bone marrow invasion (P = 0.000), and higher IPI (P = 0.035). Additionally, the survival rates of patients in the FOXO1 high-expression group were significantly better than those in the FOXO1 low-expression group (χ2 = 5.346, P = 0.021). We also observed that inactivation of FOXO1 increased CD4+ T cell proliferation and altered the survival and cell-cycle progression of CD4+ T cells. Finally, we confirmed that inactivation of FOXO1 induces Tfh cell programing and function. Conclusions: Inactivation of FOXO1 in AITL plays a key role in the tumorigenesis and progression of AITL. We propose that FOXO1 expression could be a useful prognostic marker in AITL patients to predict poor survival, and to design appropriate therapeutic strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。