Induced Pluripotent Stem Cell Modeling of Best Disease and Autosomal Recessive Bestrophinopathy

贝斯特病和常染色体隐性遗传性贝斯特病的诱导性多能干细胞建模

阅读:7
作者:Ji Hwan Lee, Jin Ok Oh, Christopher Seungkyu Lee

Conclusion

A human iPSC model of ARB showed a functional deficiency rather than anatomical defects. ARB may be caused by RPE dysfunction following BEST1 mutation.

Methods

Human iPSC lines were generated from mononuclear cells in peripheral blood of one ARB patient, one autosomal dominant BD patient, and two normal controls. Immunocytochemistry and reverse transcriptase polymerase chain reaction in iPSC lines were conducted to demonstrate the pluripotent markers. After the differentiation of iPSC into functional retinal pigment epithelium (RPE), morphological characteristics of the RPE were evaluated using confocal microscopy and immunocytochemistry. The rates of fluid flow across iPSC-RPE monolayer were measured to compare apical to basal fluid transports by RPE. RNA sequencing was performed on iPSC-RPE to identify the differences in gene expression profiles, and specific gene sets were tested using Gene Set Enrichment Analysis.

Purpose

To understand the pathophysiology of Best disease (BD) and autosomal recessive bestrophinopathy (ARB) by establishing an in vitro model using human induced pluripotent stem cell (iPSC). Materials and

Results

Morphological characteristics, gene expression, and epithelial integrity of ARB iPSC were comparable to those of BD patient or normal control. Fluid transport from apical to basal was significantly decreased in ARB iPSC-RPE compared with BD iPSC-RPE or control iPSC-RPE. Gene Set Enrichment Analysis confirmed that ARB iPSC-RPE exhibited significant enrichments of epithelial-mesenchymal transition gene set and TNF-α signaling via NF-κB gene set compared to control iPSC-RPE or BD iPSC-RPE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。