Murine high specificity/sensitivity competitive europium insulin autoantibody assay

小鼠高特异性/敏感性竞争性铕胰岛素自身抗体检测

阅读:3
作者:Naru Babaya, Edwin Liu, Dongmei Miao, Marcella Li, Liping Yu, George S Eisenbarth

Background

Most insulin autoantibody assays for both human and animal models are in a radioassay format utilizing (125)I-insulin, but despite the radioassay format international workshops have documented difficulty in standardization between laboratories. There is thus a need for simpler assay formats that do not utilize radioactivity, yet retain the high specificity and sensitivity of radioassays.

Conclusions

Our results clearly indicate that low levels of insulin autoantibodies can be detected in an ELISA-like format. Combining a europium-based ELISA with competition with fluid-phase autoantigen can be applicable to many autoantigens to achieve high specificity and sensitivity in an ELISA format.

Methods

To establish an easier enzyme-linked immunosorbent assay (ELISA) for insulin autoantibodies of non-obese diabetic (NOD) mice, we used an ELISA format, competition with unlabeled insulin, europium-avidin, and time-resolved fluorescence detection (competitive europium insulin autoantibody assay).

Results

The competitive europium assay of insulin autoantibodies when applied to sera from NOD mice had high sensitivity and specificity (92% sensitivity, 100% specificity) compared to our standard insulin autoantibody radioassay (72% sensitivity, 100% specificity) in analyzing blind workshop sera. It is noteworthy that though the assay has extremely high sensitivity for murine insulin autoantibodies and utilizes human insulin as target autoantigen, human sera with high levels of insulin autoantibodies are not detected. Conclusions: Our results clearly indicate that low levels of insulin autoantibodies can be detected in an ELISA-like format. Combining a europium-based ELISA with competition with fluid-phase autoantigen can be applicable to many autoantigens to achieve high specificity and sensitivity in an ELISA format.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。