Optimizing Mannose "Click" Conjugation to Polymeric Nanoparticles for Targeted siRNA Delivery to Human and Murine Macrophages

优化甘露糖“点击”结合到聚合物纳米粒子上,以便将 siRNA 靶向递送至人类和鼠巨噬细胞

阅读:7
作者:Evan B Glass, Shirin Masjedi, Stephanie O Dudzinski, Andrew J Wilson, Craig L Duvall, Fiona E Yull, Todd D Giorgio

Abstract

"Smart", dual pH-responsive, and endosomolytic polymeric nanoparticles have demonstrated great potential for localized drug delivery, especially for siRNA delivery to the cytoplasm of cells. However, targeted delivery to a specific cell phenotype requires an additional level of functionality. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a highly selective bioconjugation reaction that can be performed in conjunction with other polymerization techniques without adversely affecting reaction kinetics, but there exists some concern for residual copper causing cytotoxicity. To alleviate these concerns, we evaluated conjugation efficiency, residual copper content, and cell viability in relation to copper catalyst concentration. Our results demonstrated an optimal range for minimizing cytotoxicity while maintaining high levels of conjugation efficiency, and these conditions produced polymers with increased targeting to M2-polarized macrophages, as well as successful delivery of therapeutic siRNA that reprogrammed the macrophages to a proinflammatory phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。