The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus

温度对全球入侵蚊子白纹伊蚊的遗留效应和幼虫竞争的影响

阅读:4
作者:Nnaemeka F Ezeakacha, Donald A Yee

Background

Ectotherms, like mosquitoes, have evolved specific responses to variation in environmental conditions like temperature, and these responses could confer a fitness benefit or cost when carried-over to different life stages. However, effects of temperature on animals with complex life-cycles often only focus on part of their life-cycle, or only consider how single aspects of life-history may carry over to new stages. Herein we investigated how temperature affects intraspecific larval competition and carry-over effects from larval to adult stages in the widespread invasive Asian tiger mosquito Aedes albopictus.

Conclusions

Temperature appears to affect life-history of developing larvae under competitive interactions and can also alter adult fitness as the disparity between larval rearing and adult habitat temperatures increases. This has importance for our understanding for how different life-history stages of Ae. albopictus and other vectors of disease may respond to changing climates.

Methods

For larval competition, larvae were reared at three densities (10, 20, and 40 individuals) across three source temperatures (21 °C, 27 °C and 34 °C). To test carry-over effects, adult survival was measured for individuals crossed with adult temperatures of 21 °C, 27 °C and 34 °C from the larval density of 20 individuals at each source temperature. Fecundity data also were obtained from mated females.

Results

For competition, there was a significant interaction between larval density and temperature, with the smallest females, who took the longest to develop, produced in the highest temperatures; density generally accentuated this effect. Regarding carry-over effects, adults exposed to higher temperatures lead to greater differences in fecundity and survival of adult populations. Conclusions: Temperature appears to affect life-history of developing larvae under competitive interactions and can also alter adult fitness as the disparity between larval rearing and adult habitat temperatures increases. This has importance for our understanding for how different life-history stages of Ae. albopictus and other vectors of disease may respond to changing climates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。