Interaction of actin with carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) receptor in liposomes is Ca2+- and phospholipid-dependent

脂质体中肌动蛋白与癌胚抗原相关细胞粘附分子 1 (CEACAM1) 受体的相互作用是 Ca2+ 和磷脂依赖性的

阅读:5
作者:Rongze Lu, Michiel J M Niesen, Weidong Hu, Nagarajan Vaidehi, John E Shively

Abstract

The regulation of binding of G-actin to cytoplasmic domains of cell surface receptors is a common mechanism to control diverse biological processes. To model the regulation of G-actin binding to a cell surface receptor we used the cell-cell adhesion molecule carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-S) in which G-actin binds to its short cytoplasmic domain (12 amino acids; Chen, C. J., Kirshner, J., Sherman, M. A., Hu, W., Nguyen, T., and Shively, J. E. (2007) J. Biol. Chem. 282, 5749-5760). A liposome model system demonstrates that G-actin binds to the cytosolic domain peptide of CEACAM1-S in the presence of negatively charged palmitoyl-oleoyl phosphatidylserine (POPS) liposomes and Ca(2+). In contrast, no binding of G-actin was observed in palmitoyl-oleoyl phosphatidylcholine (POPC) liposomes or when a key residue in the peptide, Phe-454, is replaced with Ala. Molecular Dynamics simulations on CEACAM1-S in an asymmetric phospholipid bilayer show migration of Ca(2+) ions to the lipid leaflet containing POPS and reveal two conformations for Phe-454 explaining the reversible availability of this residue for G-actin binding. NMR transverse relaxation optimized spectroscopic analysis of (13)C-labeled Phe-454 CEACAM1-S peptide in liposomes plus actin further confirmed the existence of two peptide conformers and the Ca(2+) dependence of actin binding. These findings explain how a receptor with a short cytoplasmic domain can recruit a cytosolic protein in a phospholipid and Ca(2+)-specific manner. In addition, this model system provides a powerful approach that can be applied to study other membrane protein interactions with their cytosolic targets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。