Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling

抗雄激素受体 ASC-J9 与抗雄激素 MDV3100(恩杂鲁胺)或 Casodex(比卡鲁胺)通过对巨噬细胞浸润和 STAT3-CCL2 信号的差异调节对前列腺癌转移产生相反的影响

阅读:6
作者:T-H Lin, K Izumi, S O Lee, W-J Lin, S Yeh, C Chang

Abstract

Despite androgen deprivation therapy (ADT) suppression of prostate cancer (PCa) growth, its overall effects on PCa metastasis remain unclear. Using human (C4-2B/THP1) and mouse (TRAMP-C1/RAW264.7) PCa cells-macrophages co-culture systems, we found currently used anti-androgens, MDV3100 (enzalutamide) or Casodex (bicalutamide), promoted macrophage migration to PCa cells that consequently led to enhanced PCa cell invasion. In contrast, the AR degradation enhancer, ASC-J9, suppressed both macrophage migration and subsequent PCa cell invasion. Mechanism dissection showed that Casodex/MDV3100 reduced the AR-mediated PIAS3 expression and enhanced the pSTAT3-CCL2 pathway. Addition of CCR2 antagonist reversed the Casodex/MDV3100-induced macrophage migration and PCa cell invasion. In contrast, ASC-J9 could regulate pSTAT3-CCL2 signaling using two pathways: an AR-dependent pathway via inhibiting PIAS3 expression and an AR-independent pathway via direct inhibition of the STAT3 phosphorylation/activation. These findings were confirmed in the in vivo mouse model with orthotopically injected TRAMP-C1 cells. Together, these results may raise the potential concern about the currently used ADT with anti-androgens that promotes PCa metastasis and may provide some new and better therapeutic strategies using ASC-J9 alone or a combinational therapy that simultaneously targets androgens/AR signaling and PIAS3-pSTAT3-CCL2 signaling to better battle PCa growth and metastasis at castration-resistant stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。