Resveratrol Protects Rat Ovarian Luteinized Granulosa Cells from H2O2-Induced Dysfunction by Activating Autophagy

白藜芦醇通过激活自噬保护大鼠卵巢黄素化颗粒细胞免受 H2O2 诱导的功能障碍

阅读:6
作者:Minghui Cai, Haijuan Sun, Yujia Huang, Haixu Yao, Chen Zhao, Jiao Wang, Hui Zhu

Abstract

Resveratrol performs a variety of biological activities, including the potential regulation of autophagy. However, it is unclear whether resveratrol protects against luteal dysfunction and whether autophagy involves the regulation of resveratrol. This study aims to investigate whether resveratrol can regulate autophagy to resist H2O2-induced luteinized granulosa cell dysfunction in vitro. Our results showed that resveratrol can enhance cell viability, stimulate the secretion of progesterone and estradiol, and resist cell apoptosis in H2O2-induced luteinized granulosa cell dysfunction. Resveratrol can activate autophagy by stimulating the expression of autophagy-related genes at the transcriptional and translational levels and increasing the formation of autophagosomes and autophagolysosomes. Rapamycin, 3-methyladenine, and bafilomycin A1 regulated the levels of autophagy-related genes in H2O2-induced luteinized granulosa cell dysfunction and further confirmed the protective role of autophagy activated by resveratrol. In conclusion, resveratrol activates autophagy to resist H2O2-induced oxidative dysfunction, which is crucial for stabilizing the secretory function of luteinized granulosa cells and inhibiting apoptosis. This study may contribute to revealing the protective effects of resveratrol on resisting luteal dysfunction from the perspective of regulating autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。