Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration

通过单分子计数和强度校准扩展荧光检测的动态范围

阅读:2
作者:Lucas Smith, Manish Kohli ,Andrew M Smith

Abstract

Surface capture assays can measure fluorescently labeled analytes across a 1000-fold concentration range and at the sub-nanomolar level, but many biological molecules exhibit 1,000,000-fold variations in abundance down to the femtomolar level. The goal of this work is to expand the dynamic range of fluorescence assays by using imaging to combine molecular counting with single-molecule calibration of ensemble intensities. We evaluate optical limits imposed by surface-captured fluorescent labels, compare performances of different fluorophore classes, and use detector acquisition parameters to span wide ranges of fluorescence irradiance. We find that the fluorescent protein phycoerythrin provides uniquely suitable properties with exceptionally intense and homogeneous single-fluorophore brightness that can overcome arbitrary spot detection threshold biases. Major limitations imposed by nonspecifically bound fluorophores were then overcome using rolling circle amplification to densely label cancer-associated miRNA biomarkers, allowing accurate single-molecule detection and calibration across nearly 5 orders of magnitude of concentration with a detection limit of 29 fM. These imaging and molecular counting strategies can be widely applied to expand the limit of detection and dynamic range of a variety of surface fluorescence assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。