Glucose biosensor based on open-source wireless microfluidic potentiostat

基于开源无线微流体恒电位仪的葡萄糖生物传感器

阅读:8
作者:Conan Mercer, Richard Bennett, Peter Ó Conghaile, James F Rusling, Dónal Leech

Abstract

Wireless potentiostats capable of cyclic voltammetry and amperometry that connect to the Internet are emerging as key attributes of future point-of-care devices. This work presents an "integrated microfluidic electrochemical detector" (iMED) three-electrode multi-potentiostat designed around operational amplifiers connected to a powerful WiFi-based microcontroller as a promising alternative to more expensive and complex strategies reported in the literature. The iMED is integrated with a microfluidic system developed to be controlled by the same microcontroller. The iMED is programmed wirelessly over a standard WiFi network and all electrochemical data is uploaded to an open-source cloud-based server. A wired desktop computer is not necessary for operation or program uploading. This method of integrated microfluidic automation is simple, uses common and inexpensive materials, and is compatible with commercial sample injectors. An integrated biosensor platform contains four screen-printed carbon arrays inside 4 separate microfluidic detection chambers with Pt counter and pseudo Ag/AgCl reference electrodes in situ. The iMED is benchmarked with K3[Fe(CN)6] against a commercial potentiostat and then as a glucose biosensor using glucose-oxidising films of [Os(2,2'-bipyridine)2(polyvinylimidazole)10Cl] prepared on screen-printed electrodes with multi walled carbon nanotubes, poly(ethylene glycol) diglycidyl ether and flavin adenine dinucleotide-dependent glucose dehydrogenase. Potential application of this cost-effective wireless potentiostat approach to modern bioelectronics and point-of-care diagnosis is demonstrated by production of glucose oxidation currents, under pseudo-physiological conditions, using mediating films with lower redox potentials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。