dFOXO-independent effects of reduced insulin-like signaling in Drosophila

果蝇胰岛素样信号减少的 dFOXO 独立效应

阅读:7
作者:Cathy Slack, Maria E Giannakou, Andrea Foley, Martin Goss, Linda Partridge

Abstract

The insulin/insulin-like growth factor-like signaling (IIS) pathway in metazoans has evolutionarily conserved roles in growth control, metabolic homeostasis, stress responses, reproduction, and lifespan. Genetic manipulations that reduce IIS in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the mouse have been shown not only to produce substantial increases in lifespan but also to ameliorate several age-related diseases. In C. elegans, the multitude of phenotypes produced by the reduction in IIS are all suppressed in the absence of the worm FOXO transcription factor, DAF-16, suggesting that they are all under common regulation. It is not yet clear in other animal models whether the activity of FOXOs mediate all of the physiological effects of reduced IIS, especially increased lifespan. We have addressed this issue by examining the effects of reduced IIS in the absence of dFOXO in Drosophila, using a newly generated null allele of dfoxo. We found that the removal of dFOXO almost completely blocks IIS-dependent lifespan extension. However, unlike in C. elegans, removal of dFOXO does not suppress the body size, fecundity, or oxidative stress resistance phenotypes of IIS-compromised flies. In contrast, IIS-dependent xenobiotic resistance is fully dependent on dFOXO activity. Our results therefore suggest that there is evolutionary divergence in the downstream mechanisms that mediate the effects of IIS. They also imply that in Drosophila, additional factors act alongside dFOXO to produce IIS-dependent responses in body size, fecundity, and oxidative stress resistance and that these phenotypes are not causal in IIS-mediated extension of lifespan.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。