Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces

恒定力作用下肌联蛋白免疫球蛋白结构域平衡折叠和展开转变的动力学

阅读:12
作者:Hu Chen, Guohua Yuan, Ricksen S Winardhi, Mingxi Yao, Ionel Popa, Julio M Fernandez, Jie Yan

Abstract

The mechanical stability of force-bearing proteins is crucial for their functions. However, slow transition rates of complex protein domains have made it challenging to investigate their equilibrium force-dependent structural transitions. Using ultra stable magnetic tweezers, we report the first equilibrium single-molecule force manipulation study of the classic titin I27 immunoglobulin domain. We found that individual I27 in a tandem repeat unfold/fold independently. We obtained the force-dependent free energy difference between unfolded and folded I27 and determined the critical force (∼5.4 pN) at which unfolding and folding have equal probability. We also determined the force-dependent free energy landscape of unfolding/folding transitions based on measurement of the free energy cost of unfolding. In addition to providing insights into the force-dependent structural transitions of titin I27, our results suggest that the conformations of titin immunoglobulin domains can be significantly altered during low force, long duration muscle stretching.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。