Intact mitochondrial function in the setting of telomere-induced senescence

端粒诱导衰老过程中线粒体功能完整

阅读:6
作者:Daniel I Sullivan, Fiona M Bello, Agustin Gil Silva, Kevin M Redding, Luca Giordano, Angela M Hinchie, Kelly E Loughridge, Ana L Mora, Melanie Königshoff, Brett A Kaufman, Michael J Jurczak, Jonathan K Alder

Abstract

Mitochondria play essential roles in metabolic support and signaling within all cells. Congenital and acquired defects in mitochondria are responsible for several pathologies, including premature entrance to cellar senescence. Conversely, we examined the consequences of dysfunctional telomere-driven cellular senescence on mitochondrial biogenesis and function. We drove senescence in vitro and in vivo by deleting the telomere-binding protein TRF2 in fibroblasts and hepatocytes, respectively. Deletion of TRF2 led to a robust DNA damage response, global changes in transcription, and induction of cellular senescence. In vitro, senescent cells had significant increases in mitochondrial respiratory capacity driven by increased cellular and mitochondrial volume. Hepatocytes with dysfunctional telomeres maintained their mitochondrial respiratory capacity in vivo, whether measured in intact cells or purified mitochondria. Induction of senescence led to the upregulation of overlapping and distinct genes in fibroblasts and hepatocytes, but transcripts related to mitochondria were preserved. Our results support that mitochondrial function and activity are preserved in telomere dysfunction-induced senescence, which may facilitate continued cellular functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。