A neuropathological cell model derived from Niemann-Pick disease type C patient-specific iPSCs shows disruption of the p62/SQSTM1-KEAP1-NRF2 Axis and impaired formation of neuronal networks

源自尼曼匹克病 C 型患者特异性 iPSC 的神经病理学细胞模型显示 p62/SQSTM1-KEAP1-NRF2 轴中断,神经元网络形成受损

阅读:4
作者:Ryo Saito, Takashi Miyajima, Takeo Iwamoto, Chen Wu, Ken Suzuki, Mohammad Arif Hossain, Miyo Munakata, Takumi Era, Yoshikatsu Eto

Abstract

Niemann-Pick disease type C (NPC) is a rare neurodegenerative disorder caused by a recessive mutation in the NPC1 or NPC2 gene, in which patients exhibit lysosomal accumulation of unesterified cholesterol and glycolipids. Most of the research on NPC has been done in patient-derived skin fibroblasts or mouse models. Therefore, we developed NPC patient neurons derived from induced pluripotent stem cells (iPSCs) to investigate the neuropathological cause of the disease. Although an accumulation of cholesterol and glycolipids, which is characteristic of NPC, was observed in both undifferentiated iPSCs and derived neural stem cells (NSCs), we could not observed the abnormalities in differentiation potential and autophagic activity in such immature cells. However, definite neuropathological features were detected in mature neuronal cells generated from NPC patient-derived iPSCs. Abnormal accumulation of cholesterol and other lipids identified by lipid droplets and number of enlarged lysosomes was more prominent in mature neuronal cells rather than in iPSCs and/or NSCs. Thin-sectioning electron microscopic analysis also demonstrated numerous typical membranous cytoplasmic bodies in mature neuronal cells. Furthermore, TUJ1-positive neurite density was significantly reduced in NPC patient-derived neuronal cells. In addition, disruption of the p62/SQSTM1-KEAP1-NRF2 axis occurred in neurons differentiated from NPC patient-derived iPSCs. These data indicate the impairment of neuronal network formation associated with neurodegeneration in mature neuronal cells derived from patients with NPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。