Noninvasive In Situ NMR Study of "Dead Lithium" Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries

全电池锂金属电池中“死锂”形成和锂腐蚀的无创原位核磁共振研究

阅读:7
作者:Anna B Gunnarsdóttir, Chibueze V Amanchukwu, Svetlana Menkin, Clare P Grey

Abstract

Capacity retention in lithium metal batteries needs to be improved if they are to be commercially viable, the low cycling stability and Li corrosion during storage of lithium metal batteries being even more problematic when there is no excess lithium in the cell. Herein, we develop in situ NMR metrology to study "anode-free" lithium metal batteries where lithium is plated directly onto a bare copper current collector from a LiFePO4 cathode. The methodology allows inactive or "dead lithium" formation during plating and stripping of lithium in a full-cell lithium metal battery to be tracked: dead lithium and SEI formation can be quantified by NMR and their relative rates of formation are here compared in carbonate and ether-electrolytes. Little-to-no dead Li was observed when FEC is used as an additive. The bulk magnetic susceptibility effects arising from the paramagnetic lithium metal were used to distinguish between different surface coverages of lithium deposits. The amount of lithium metal was monitored during rest periods, and lithium metal dissolution (corrosion) was observed in all electrolytes, even during the periods when the battery is not in use, i.e., when no current is flowing, demonstrating that dissolution of lithium remains a critical issue for lithium metal batteries. The high rate of corrosion is attributed to SEI formation on both lithium metal and copper (and Cu+, Cu2+ reduction). Strategies to mitigate the corrosion are explored, the work demonstrating that both polymer coatings and the modification of the copper surface chemistry help to stabilize the lithium metal surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。