No Structure-Switching Required: A Generalizable Exonuclease-Mediated Aptamer-Based Assay for Small-Molecule Detection

无需结构转换:一种可推广的核酸外切酶介导的基于适体的检测小分子方法

阅读:7
作者:Juan Canoura, Zongwen Wang, Haixiang Yu, Obtin Alkhamis, Fengfu Fu, Yi Xiao

Abstract

The binding of small molecules to double-stranded DNA can modulate its susceptibility to digestion by exonucleases. Here, we show that the digestion of aptamers by exonuclease III can likewise be inhibited upon binding of small-molecule targets and exploit this finding for the first time to achieve sensitive, label-free small-molecule detection. This approach does not require any sequence engineering and employs prefolded aptamers which have higher target-binding affinities than structure-switching aptamers widely used in current small-molecule detecting assays. We first use a dehydroisoandrosterone-3-sulfate-binding aptamer to show that target binding halts exonuclease III digestion four bases prior to the binding site. This leaves behind a double-stranded product that retains strong target affinity, whereas digestion of nontarget-bound aptamer produces a single-stranded product incapable of target binding. Exonuclease I efficiently eliminates these single-stranded products but is unable to digest the target-bound double-stranded product. The remaining products can be fluorescently quantified with SYBR Gold to determine target concentrations. We demonstrate that this dual-exonuclease-mediated approach can be broadly applied to other aptamers with differing secondary structures to achieve sensitive detection of various targets, even in biological matrices. Importantly, each aptamer digestion product has a unique sequence, enabling the creation of multiplex assays, and we successfully demonstrate simultaneous detection of cocaine and ATP in a single microliter volume sample in 25 min via sequence-specific molecular beacons. Due to the generality and simplicity of this assay, we believe that different DNA signal-reporting or amplification strategies can be adopted into our assay for target detection in diverse analytical contexts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。