Glycosynthases enable a highly efficient chemoenzymatic synthesis of N-glycoproteins carrying intact natural N-glycans

糖合酶能够高效化学酶合成携带完整天然 N-糖的 N-糖蛋白

阅读:9
作者:Wei Huang, Cishan Li, Bing Li, Midori Umekawa, Kenji Yamamoto, Xinyu Zhang, Lai-Xi Wang

Abstract

Homogeneous N-glycoproteins carrying defined natural N-glycans are essential for detailed structural and functional studies. The transglycosylation activity of the endo-beta-N-acetylglucosaminidases from Arthrobacter protophormiae (Endo-A) and Mucor hiemalis (Endo-M) holds great potential for glycoprotein synthesis, but the wild-type enzymes are not practical for making glycoproteins carrying native N-glycans because of their predominant activity for product hydrolysis. In this article, we report studies of two endoglycosidase-based glycosynthases, EndoM-N175A and EndoA-N171A, and their usefulness in constructing homogeneous N-glycoproteins carrying natural N-glycans. The oligosaccharide oxazoline corresponding to the biantennary complex-type N-glycan was synthesized and tested with the two glycosynthases. The EndoM-N175A mutant was able to efficiently transfer the complex-type glycan oxazoline to a GlcNAc peptide and GlcNAc-containing ribonuclease to form the corresponding homogeneous glycopeptide/glycoprotein. The EndoA-N171A mutant did not recognize the complex-type N-glycan oxazoline but could efficiently use the high-mannose-type glycan oxazoline for transglycosylation. These mutants possess the transglycosylation activity but lack the hydrolytic activity toward the product. Kinetic studies revealed that the dramatically enhanced synthetic efficiency of the EndoA-N171A mutant was due to the significantly reduced hydrolytic activity toward both the Man(9)GlcNAc oxazoline and the product as well as to its enhanced activity for transglycosylation. Thus, the two mutants described here represent the first endoglycosidase-based glycosynthases enabling a highly efficient synthesis of homogeneous natural N-glycoproteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。