Detection of the sickle hemoglobin allele using a surface plasmon resonance based biosensor

使用基于表面等离子体共振的生物传感器检测镰状血红蛋白等位基因

阅读:4
作者:Giulia Breveglieri, Elisabetta D'Aversa, Lucia Carmela Cosenza, Effrossyni Boutou, Angeliki Balassopoulou, Ersi Voskaridou, Roberto Gambari, Monica Borgatti

Abstract

Sickle Cell Disease (SCD) is a monogenic hereditary blood disorder caused by a single point mutation (βS) in the β globin gene resulting in an abnormal hemoglobin (HbS) that can polymerize within the erythrocytes, inducing their characteristic sickle shape. This causes hemolytic anemia and occlusive vessels for the most severe clinical status. Molecular analysis is crucial for fast and precise diagnosis of different forms of SCD, and, on the basis of underlying genotype, for supporting the most appropriate treatment options. In this context, we describe a simple and reproducible protocol for the molecular identification of the βS mutation based on surface plasmon resonance (SPR) using the Biacore™ X100 affinity biosensor. This technology has already demonstrated its diagnostic suitability for the identification of point mutations responsible for genetic diseases such as cystic fibrosis and β thalassemia, using a protocol based on immobilization of PCR products on the sensor chip. On the contrary, in this work we applied a SPR strategy based on an innovative interaction format, recently developed in our group also for β thalassemia mutations. In particular, we correctly detected the βS mutation responsible for SCD, both in homozygous and heterozygous states, after hybridization of two oligonucleotide probes (normal and mutated) for the βS mutation, immobilized on sensor chip, with unbalanced PCR products obtained from 53 genomic DNAs carrying different βS allele combinations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。