Grapevine fatty acid hydroperoxide lyase generates actin-disrupting volatiles and promotes defence-related cell death

葡萄脂肪酸氢过氧化物裂解酶产生破坏肌动蛋白的挥发物并促进防御相关的细胞死亡

阅读:6
作者:Sahar Akaberi, Hao Wang, Patricia Claudel, Michael Riemann, Bettina Hause, Philippe Hugueney, Peter Nick

Abstract

Fatty acid hydroperoxides can generate short-chained volatile aldehydes that may participate in plant defence. A grapevine hydroperoxide lyase (VvHPL1) clustering to the CYP74B class was functionally characterized with respect to a role in defence. In grapevine leaves, transcripts of this gene accumulated rapidly to high abundance in response to wounding. Cellular functions of VvHPL1 were investigated upon heterologous expression in tobacco BY-2 cells. A C-terminal green fluorescent protein (GFP) fusion of VvHPL1 was located in plastids. The overexpression lines were found to respond to salinity stress or the bacterial elicitor harpin by increasing cell death. This signal-dependent mortality response was mitigated either by addition of exogenous jasmonic acid or by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases. By feeding different substrates to recombinantly expressed enzyme, VvHPL1 could also be functionally classified as true 13-HPL. The cognate products generated by this 13-HPL were cis-3-hexenal and trans-2-hexenal. Using a GFP-tagged actin marker line, one of these isomeric products, cis-3-hexenal, was found specifically to elicit a rapid disintegration of actin filaments. This response was not only observed in the heterologous system (tobacco BY-2), but also in a grapevine cell strain expressing this marker, as well as in leaf discs from an actin marker grape used as a homologous system. These results are discussed in the context of a role for VvHPL1 in a lipoxygenase-dependent signalling pathway triggering cell death-related defence that bifurcates from jasmonate-dependent basal immunity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。