Cytosine Methylation Changes the Preferred Cis-Regulatory Configuration of Arabidopsis WUSCHEL-Related Homeobox 14

胞嘧啶甲基化改变拟南芥 WUSCHEL 相关同源框 14 的优选顺式调控结构

阅读:20
作者:Dingkun Jiang, Xinfeng Zhang, Lin Luo, Tian Li, Hao Chen, Nana Ma, Lufeng Fu, Peng Tian, Fei Mao, Peitao Lü, Honghong Guo, Fangjie Zhu

Abstract

The Arabidopsis transcription factor WUSCHEL-related homeobox 14 (AtWOX14) plays versatile roles in plant growth and development. However, its biochemical specificity of DNA binding, its genome-wide regulatory targets, and how these are affected by DNA methylation remain uncharacterized. To clarify the biochemistry underlying the regulatory function of AtWOX14, using the recently developed 5mC-incorporation strategy, this study performed SELEX and DAP-seq for AtWOX14 both in the presence and absence of cytosine methylation, systematically curated 65 motif models and identified 51,039 genomic binding sites for AtWOX14, and examined how 5mC affects DNA binding of AtWOX14 through bioinformatic analyses. Overall, 5mC represses the DNA binding of AtWOX14 monomers but facilitates the binding of its dimers, and the methylation effect on a cytosine's affinity to AtWOX14 is position-dependent. Notably, we found that the most preferred homodimeric configuration of AtWOX14 has changed from ER1 to ER0 upon methylation. This change has the potential to rewire the regulatory network downstream of AtWOX14, as suggested by the GO analyses and the strength changes in the DAP-seq peaks upon methylation. Therefore, this work comprehensively illustrates the specificity and targets of AtWOX14 and reports a previously unrecognized effect of DNA methylation on transcription factor binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。