Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a CrIII Polypyridine Complex and Their Use in Photoredox Catalysis

揭示 CrIII 多吡啶复合物中自旋翻转激发态的氧化性质及其在光氧化还原催化中的应用

阅读:6
作者:Tobias H Bürgin, Felix Glaser, Oliver S Wenger

Abstract

The photoredox activity of well-known RuII complexes stems from metal-to-ligand charge transfer (MLCT) excited states, in which a ligand-based electron can initiate chemical reductions and a metal-centered hole can trigger oxidations. CrIII polypyridines show similar photoredox properties, although they have fundamentally different electronic structures. Their photoactive excited state is of spin-flip nature, differing from the electronic ground state merely by a change of one electron spin, but with otherwise identical d-orbital occupancy. We find that the driving-force dependence for photoinduced electron transfer from 10 different donors to a spin-flip excited state of a CrIII complex is very similar to that for a RuII polypyridine, and thereby validate the concept of estimating the redox potential of d3 spin-flip excited states in analogous manner as for the MLCT states of d6 compounds. Building on this insight, we use our CrIII complex for photocatalytic reactions not previously explored with this compound class, including the aerobic bromination of methoxyaryls, oxygenation of 1,1,2,2-tetraphenylethylene, aerobic hydroxylation of arylboronic acids, and the vinylation of N-phenyl pyrrolidine. This work contributes to understanding the fundamental photochemical properties of first-row transition-metal complexes in comparison to well-explored precious-metal-based photocatalysts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。