Endothelial cell-specific reduction in mTOR ameliorates age-related arterial and metabolic dysfunction

内皮细胞特异性 mTOR 减少可改善与年龄相关的动脉和代谢功能障碍

阅读:7
作者:Md Torikul Islam, Shelby A Hall, Tavia Dutson, Samuel I Bloom, R Colton Bramwell, John Kim, Jordan R Tucker, Daniel R Machin, Anthony J Donato, Lisa A Lesniewski

Abstract

Systemic inhibition of the mammalian target of rapamycin (mTOR) delays aging and many age-related conditions including arterial and metabolic dysfunction. However, the mechanisms and tissues involved in these beneficial effects remain largely unknown. Here, we demonstrate that activation of S6K, a downstream target of mTOR, is increased in arteries with advancing age, and that this occurs preferentially in the endothelium compared with the vascular smooth muscle. Induced endothelial cell-specific deletion of mTOR reduced protein expression by 60-70%. Although this did not significantly alter arterial and metabolic function in young mice, endothelial mTOR reduction reversed arterial stiffening and improved endothelium-dependent dilation (EDD) in old mice, indicating an improvement in age-related arterial dysfunction. Improvement in arterial function in old mice was concomitant with reductions in arterial cellular senescence, inflammation, and oxidative stress. The reduction in endothelial mTOR also improved glucose tolerance in old mice, and this was associated with attenuated hepatic gluconeogenesis and improved lipid tolerance, but was independent of alterations in peripheral insulin sensitivity, pancreatic beta cell function, or fasted plasma lipids in old mice. Lastly, we found that endothelial mTOR reduction suppressed gene expression of senescence and inflammatory markers in endothelial-rich (i.e., lung) and metabolically active organs (i.e., liver and adipose tissue), which may have contributed to the improvement in metabolic function in old mice. This is the first evidence demonstrating that reducing endothelial mTOR in old age improves arterial and metabolic function. These findings have implications for future drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。