A surfactant-stripped cabazitaxel micelle formulation optimized with accelerated storage stability

表面活性剂剥离的卡巴他赛胶束制剂经过优化,可加速储存稳定性

阅读:9
作者:Boyang Sun, Huang Jing, Moustafa T Mabrouk, Yumiao Zhang, Honglin Jin, Jonathan F Lovell

Abstract

Pluronic (Poloxomer) micelles can solubilize cabazitaxel (CTX), a second-generation taxane, and then be subjected to low-temperature "surfactant-stripping" to selectively remove loose and free surfactant, thereby increasing the drug-to-surfactant ratio. We previously found that the addition of certain other co-loaded hydrophobic cargo to the micelles can result in stabilized, surfactant-stripped cabazitaxel (sss-CTX) micelles, which resist drug aggregation in aqueous storage, a common challenge for taxanes. Here, we show that elevated temperatures can accelerate the aggregation of sss-CTX micelles, thereby enabling rapid optimization of formulations with respect to the type and ratio of co-loader used for stabilization. A sss-CTX micelle formulation was developed using mifepristone as the co-loader, at a 60% mass ratio to the CTX. Drug release, hemolysis and complement activation were investigated in vitro. Microtubule stabilization and in vitro cytotoxicity were similar for sss-CTX and a conventional Tween-80 micelle formulation. In vivo pharmacokinetics also revealed similar blood circulation of the two formulations. In subcutaneous Lewis lung carcinoma tumors, as well as in an aggressive mouse model of malignant pleural effusion, sss-CTX showed a similar therapeutic effect as the Tween-80 based formulation. Altogether, these data show that sss-CTX can achieve similar efficacy as conventional Tween-80 formulations, albeit with substantially higher drug-to-surfactant ratio and with capability of extended aqueous storage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。