Alternatively Activated Macrophages Are the Primary Retinoic Acid-Producing Cells in Human Decidua

替代激活的巨噬细胞是人类蜕膜中主要的视黄酸产生细胞

阅读:5
作者:Augustine Rajakumar, Maureen A Kane, Jianshi Yu, Jace W Jones, Hongyan Qu, Martina Badell, Robert N Taylor, Neil Sidell

Abstract

In situ production and metabolism of all-trans retinoic acid (RA) in decidual tissue are critically important for endometrial stromal differentiation, embryo implantation, and healthy placentation. However, the cellular source(s) of RA in this tissue has yet to be determined. To identify the primary RA-producing cells in human term decidua, we isolated cells from decidua basalis of delivered placenta and quantified cellular retinal dehydrogenase (RALDH) activity, a major biosynthetic enzyme whose activity determines the synthesis of RA from retinol, using an Aldefluor assay and flow cytometry. RA production in decidual tissue and sorted cell subpopulations was evaluated by liquid chromatography-tandem mass spectrometry. CD14+ cells (macrophages/monocytes) showed > 4-fold higher RALDH activity than stromal cells (CD10+), T cells (CD3+), or non-T lymphocytes (CD3-negative). CD11c+ cells that did not co-express CD14 showed about one-third the RALDH activity of their CD14 co-expressing counterparts. The highest RALDH activity was found in "alternatively activated" M2 macrophages delineated by the simultaneous expression of CD14 and CD163. The greater RA synthesizing capacity of M2 versus CD14+CD163-ve (M1) cells was confirmed by direct quantitation of RA biosynthesis from retinol. RA levels in whole decidua were correlated with M2 cell density but not with stromal cell (CD10+) number, the major cell type comprising the decidua. These results identified M2 monocyte/macrophages as the primary source of RA in human term decidua. This finding may have implications for certain pregnancy complications that are known to be associated with reduced numbers of decidual M2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。