Ras signaling activates glycosylphosphatidylinositol (GPI) anchor biosynthesis via the GPI- N-acetylglucosaminyltransferase (GPI-GnT) in Candida albicans

Ras 信号通过白色念珠菌中的 GPI-N-乙酰葡萄糖胺基转移酶 (GPI-GnT) 激活糖基磷脂酰肌醇 (GPI) 锚定生物合成

阅读:4
作者:Priyanka Jain, Subhash Chandra Sethi, Vavilala A Pratyusha, Pramita Garai, Nilofer Naqvi, Sonali Singh, Kalpana Pawar, Niti Puri, Sneha Sudha Komath

Abstract

The ability of Candida albicans to switch between yeast to hyphal form is a property that is primarily associated with the invasion and virulence of this human pathogenic fungus. Several glycosylphosphatidylinositol (GPI)-anchored proteins are expressed only during hyphal morphogenesis. One of the major pathways that controls hyphal morphogenesis is the Ras-signaling pathway. We examine the cross-talk between GPI anchor biosynthesis and Ras signaling in C. albicans. We show that the first step of GPI biosynthesis is activated by Ras in C. albicans This is diametrically opposite to what is reported in Saccharomyces cerevisiae Of the two C. albicans Ras proteins, CaRas1 alone activates GPI-GnT activity; activity is further stimulated by constitutively activated CaRas1. CaRas1 localized to the cytoplasm or endoplasmic reticulum (ER) is sufficient for GPI-GnT activation. Of the six subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) that catalyze the first step of GPI biosynthesis, CaGpi2 is the key player involved in activating Ras signaling and hyphal morphogenesis. Activation of Ras signaling is independent of the catalytic competence of GPI-GnT. This too is unlike what is observed in S. cerevisiae where multiple subunits were identified as inhibiting Ras2. Fluorescence resonance energy transfer (FRET) studies indicate a specific physical interaction between CaRas1 and CaGpi2 in the ER, which would explain the ability of CaRas1 to activate GPI-GnT. CaGpi2, in turn, promotes activation of the Ras-signaling pathway and hyphal morphogenesis. The Cagpi2 mutant is also more susceptible to macrophage-mediated killing, and macrophage cells show better survival when co-cultured with Cagpi2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。