Microglial MT1 activation inhibits LPS-induced neuroinflammation via regulation of metabolic reprogramming

小胶质细胞 MT1 激活通过调节代谢重编程抑制 LPS 诱导的神经炎症

阅读:7
作者:Chao Gu, Fen Wang, Yu-Ting Zhang, Shi-Zhuang Wei, Jun-Yi Liu, Hong-Yang Sun, Guang-Hui Wang, Chun-Feng Liu

Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Although its pathogenesis remains unclear, a number of studies indicate that microglia-mediated neuroinflammation makes a great contribution to the pathogenesis of PD. Melatonin receptor 1 (MT1) is widely expressed in glia cells and neurons in substantia nigra (SN). Neuronal MT1 is a neuroprotective factor, but it remains largely unknown whether dysfunction of microglial MT1 is involved in the PD pathogenesis. Here, we found that MT1 was reduced in microglia of SN in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Microglial MT1 activation dramatically inhibited lipopolysaccharide (LPS)-induced neuroinflammation, whereas loss of microglial MT1 aggravated it. Metabolic reprogramming of microglia was found to contribute to the anti-inflammatory effects of MT1 activation. LPS-induced excessive aerobic glycolysis and impaired oxidative phosphorylation (OXPHOS) could be reversed by microglial MT1 activation. MT1 positively regulated pyruvate dehydrogenase alpha 1 (PDHA1) expression to enhance OXPHOS and suppress aerobic glycolysis. Furthermore, in LPS-treated microglia, MT1 activation decreased the toxicity of conditioned media to the dopaminergic (DA) cell line MES23.5. Most importantly, the anti-inflammatory effects of MT1 activation were observed in LPS-stimulated mouse model. In general, our study demonstrates that MT1 activation inhibits LPS-induced microglial activation through regulating its metabolic reprogramming, which provides a mechanistic insight for microglial MT1 in anti-inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。