SPHK Inhibitors and Zoledronic Acid Suppress Osteoclastogenesis and Wear Particle-Induced Osteolysis

SPHK 抑制剂和唑来膦酸可抑制破骨细胞生成和磨损颗粒诱发的骨溶解

阅读:11
作者:Minghui Gu, Baiqi Pan, Weishen Chen, Hai Xu, Xiaoyu Wu, Xuantao Hu, Linli Zheng, Yongyu Ye, Qing Meng, Guoyan Xian, Ziji Zhang, Puyi Sheng

Background

Inflammatory osteolysis induced by wear particles is the major cause of prosthetic loosening after artificial joint replacement, and its prevention and treatment are difficult worldwide. Our previous study confirmed that sphingosine kinases (SPHKs) are important mediators regulating the wear particle-induced macrophage inflammatory response. However, it is unclear whether SPHKs can modulate chronic inflammation and alleviate osteolysis. Zoledronic acid (ZA), an imidazole-containing bisphosphonate, directly affects osteoclasts and prevents bone mineral-related diseases. However, the effects of SPHK inhibitors and ZA used to treat periprosthetic osteolysis are unknown.

Conclusion

Our study revealed that wear particles could induce inflammatory osteolysis by upregulating SPHKs/S1P-TRAF2-BECN1 and SPHK inhibitors/ZA inhibit osteoclastogenesis in vitro and prevent inflammatory osteolysis in vivo, suggesting that SPHK inhibitors and ZA can be a new perspective and scientific basis for the prevention and treatment of prosthesis loosening.

Methods

We applied tartrate-resistant acid phosphatase (TRAP) staining to evaluate bone destruction in the interface membranes of patients with aseptic loosening and a control group. A murine calvarial osteolysis model was used to examine the preventative effect of SPHK inhibitors and ZA on osteolysis. Micro-CT scanning, immunohistochemistry (IHC), and histomorphometric analysis were conducted to determine the variations in inflammatory osteolysis. The effects of different drug concentrations on cell viability were evaluated using the Cell Counting Kit-8 (CCK-8) assay. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to confirm the reduced expression of osteoclast-specific genes after drug and titanium treatment. The osteoclast formation and functions of the drugs were analyzed using TRAP staining in vivo and in vitro. The effect of SPHKs/S1P-TRAF2-BECN1 signaling pathways was verified via RT-qPCR and tissue IHC.

Results

In this study, we found that SPHK inhibitors (ABC294640 and FTY720) combined with ZA decreased the degree of inflammatory osteolysis in vivo. However, ABC294640 and ZA suppressed osteoclast differentiation and osteoclast-specific genes in vitro. SPHKs regulate the inflammatory osteolysis induced by wear particles by increasing the expression of SPHKs/S1P-TRAF2-BECN1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。