Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium

用于记录益生菌生化浓度的顺序逻辑和遗传电路的算法编程

阅读:6
作者:Matthew Lebovich, Min Zeng, Lauren B Andrews

Abstract

Through the implementation of designable genetic circuits, engineered probiotic microorganisms could be used as noninvasive diagnostic tools for the gastrointestinal tract. For these living cells to report detected biomarkers or signals after exiting the gut, the genetic circuits must be able to record these signals by using genetically encoded memory. Complex memory register circuits could enable multiplex interrogation of biomarkers and signals. A theory-based approach to create genetic circuits containing memory, known as sequential logic circuits, was previously established for a model laboratory strain of Escherichia coli, yet how circuit component performance varies for nonmodel and clinically relevant bacterial strains is poorly understood. Here, we develop a scalable computational approach to design robust sequential logic circuits in probiotic strain Escherichia coli Nissle 1917 (EcN). In this work, we used TetR-family transcriptional repressors to build genetic logic gates that can be composed into sequential logic circuits, along with a set of engineered sensors relevant for use in the gut environment. Using standard methods, 16 genetic NOT gates and nine sensors were experimentally characterized in EcN. These data were used to design and predict the performance of circuit designs. We present a set of genetic circuits encoding both combinational logic and sequential logic and show that the circuit outputs are in close agreement with our quantitative predictions from the design algorithm. Furthermore, we demonstrate an analog-like concentration recording circuit that detects and reports three input concentration ranges of a biochemical signal using sequential logic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。