Oxidative lipid modification of nicastrin enhances amyloidogenic γ-secretase activity in Alzheimer's disease

nicastrin 的氧化脂质修饰增强了阿尔茨海默病中的淀粉样变性 γ-分泌酶活性

阅读:4
作者:A-Ryeong Gwon, Jong-Sung Park, Thiruma V Arumugam, Yong-Kook Kwon, Sic L Chan, Seol-Hee Kim, Sang-Ha Baik, Sunghee Yang, Young-Kwang Yun, Yuri Choi, Saerom Kim, Sung-Chun Tang, Dong-Hoon Hyun, Aiwu Cheng, Charles E Dann 3rd, Michel Bernier, Jaewon Lee, William R Markesbery, Mark P Mattson, Dong-Gyu

Abstract

The cause of elevated level of amyloid β-peptide (Aβ42) in common late-onset sporadic [Alzheimer's disease (AD)] has not been established. Here, we show that the membrane lipid peroxidation product 4-hydroxynonenal (HNE) is associated with amyloid and neurodegenerative pathologies in AD and that it enhances γ-secretase activity and Aβ42 production in neurons. The γ-secretase substrate receptor, nicastrin, was found to be modified by HNE in cultured neurons and in brain specimens from patients with AD, in which HNE-nicastrin levels were found to be correlated with increased γ-secretase activity and Aβ plaque burden. Furthermore, HNE modification of nicastrin enhanced its binding to the γ-secretase substrate, amyloid precursor protein (APP) C99. In addition, the stimulation of γ-secretase activity and Aβ42 production by HNE were blocked by an HNE-scavenging histidine analog in a 3xTgAD mouse model of AD. These findings suggest a specific molecular mechanism by which oxidative stress increases Aβ42 production in AD and identify HNE as a novel therapeutic target upstream of the γ-secretase cleavage of APP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。