CRISPR-powered Biosensing Platform for Quantitative Detection of Alpha-fetoprotein by a Personal Glucose Meter

基于 CRISPR 的生物传感平台,用于个人血糖仪定量检测甲胎蛋白

阅读:5
作者:Zhengyang Jia, Ziyue Li, Changchun Liu

Abstract

Alpha-fetoprotein (AFP) is an important protein biomarker of liver cancer, as its serum levels are highly correlated with the progression of disease. Conventional immunoassays for AFP detection rely on enzyme-linked immunosorbent assay analyses with expensive and bulky equipment. Here, we developed a simple, affordable, and portable CRISPR-powered personal glucose meter biosensing platform for quantitative detection of the AFP biomarker in serum samples. The biosensor takes advantage of the excellent affinity of aptamer to AFP and the collateral cleavage activity of CRISPR-Cas12a, enabling sensitive and specific CRISPR-powered protein biomarker detection. To enable point-of-care testing, we coupled invertase-catalyzed glucose production with the glucose biosensing technology to quantify AFP. Using the developed biosensing platform, we quantitatively detected AFP biomarker in spiked human serum samples with a detection sensitivity of down to 10 ng/mL. Further, we successfully applied the biosensor to detect AFP in clinical serum samples from patients with liver cancer, achieving comparable performance to the conventional assay. Therefore, this novel CRISPR-powered personal glucose meter biosensor provides a simple yet powerful alternative for detecting AFP and potentially other tumor biomarkers at the point of care.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。