GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer

GLUT3 在上皮-间质转化过程中被诱导并促进非小细胞肺癌中的肿瘤细胞增殖

阅读:8
作者:Mark Masin, Jessica Vazquez, Simona Rossi, Svenja Groeneveld, Natasha Samson, Petra C Schwalie, Bart Deplancke, Laura E Frawley, Jérôme Gouttenoire, Darius Moradpour, Trudy G Oliver, Etienne Meylan

Background

Alterations in glucose metabolism and epithelial-mesenchymal transition (EMT) constitute two important characteristics of carcinoma progression toward invasive cancer. Despite an extensive characterization of each of them separately, the links between EMT and glucose metabolism of tumor cells remain elusive. Here we show that the neuronal glucose transporter GLUT3 contributes to glucose uptake and proliferation of lung tumor cells that have undergone an EMT.

Conclusions

Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.

Results

Using a panel of human non-small cell lung cancer (NSCLC) cell lines, we demonstrate that GLUT3 is strongly expressed in mesenchymal, but not epithelial cells, a finding corroborated in hepatoma cells. Furthermore, we identify that ZEB1 binds to the GLUT3 gene to activate transcription. Importantly, inhibiting GLUT3 expression reduces glucose import and the proliferation of mesenchymal lung tumor cells, whereas ectopic expression in epithelial cells sustains proliferation in low glucose. Using a large microarray data collection of human NSCLCs, we determine that GLUT3 expression correlates with EMT markers and is prognostic of poor overall survival. Conclusions: Altogether, our results reveal that GLUT3 is a transcriptional target of ZEB1 and that this glucose transporter plays an important role in lung cancer, when tumor cells loose their epithelial characteristics to become more invasive. Moreover, these findings emphasize the development of GLUT3 inhibitory drugs as a targeted therapy for the treatment of patients with poorly differentiated tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。