Immunoassay platform with surface-enhanced resonance Raman scattering for detecting trace levels of SARS-CoV-2 spike protein

具有表面增强共振拉曼散射的免疫分析平台,用于检测痕量 SARS-CoV-2 刺突蛋白

阅读:5
作者:Maria J Bistaffa, Sabrina A Camacho, Wallance M Pazin, Carlos J L Constantino, Osvaldo N Oliveira Jr, Pedro H B Aoki

Abstract

The early diagnosis of Coronavirus disease (COVID-19) requires either an accurate detection of genetic material or a sensitive detection of viral proteins. In this work, we designed an immunoassay platform for detecting trace levels of SARS-CoV-2 spike (S) protein. It is based on surface-enhanced resonance Raman scattering (SERRS) of methylene blue (MB) adsorbed onto spherical gold nanoparticles (AuNPs) and coated with a 6 nm silica shell. The latter shell in the SERRS nanoprobe prevented aggregation and permitted functionalization with SARS-CoV-2 antibodies. Specificity of the immunoassay was achieved by combining this functionalization with antibody immobilization on the cover slides that served as the platform support. Different concentrations of SARS-CoV-2 antigen could be distinguished and the lack of influence of interferents was confirmed by treating SERRS data with the multidimensional projection technique Sammon's mapping. With SERRS using a laser line at 633 nm, the lowest concentration of spike protein detected was 10 pg/mL, achieving a limit of detection (LOD) of 0.046 ng/mL (0.60 pM). This value is comparable to the lowest concentrations in the plasma of COVID-19 patients at the onset of symptoms, thus indicating that the SERRS immunoassay platform may be employed for early diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。