A possible mechanism of inhibition of U87MG and SH-SY5Y cancer cell proliferation by diallyl trisulfide and other aspects of its activity

二烯丙基三硫醚抑制U87MG和SH-SY5Y癌细胞增殖的可能机制及其活性的其他方面

阅读:5
作者:Halina Jurkowska, Maria Wróbel, Marta Kaczor-Kamińska, Ewa Jasek-Gajda

Abstract

The study was conducted to elucidate the mechanism of antiproliferative and antioxidative action of diallyl trisulfide (DATS), a garlic-derived organosulfur compound. Changes in the L-cysteine desulfuration, and the levels of cystathionine and non-protein thiols in DATS-treated human glioblastoma (U87MG) and neuroblastoma (SH-SY5Y) cells were investigated. The inhibition of proliferation of the investigated cells by DATS was correlated with an increase in the inactivated form of Bcl-2. In U87MG cells, an increased level of sulfane sulfur and an increased activity of 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese, the enzymes involved in sulfane sulfur generation and transfer, suggest that DATS can function as a donor of sulfane sulfur atom, transferred by sulfurtransferases, to sulfhydryl groups of cysteine residues of Bcl-2 and in this way lower the level of active form of Bcl-2 by S-sulfuration. Diallyl trisulfide antioxidative effects result from an increased level of cystathionine, a precursor of cysteine, and an increased glutathione level. MPST and rhodanese, the level of which is increased in the presence of DATS, can serve as antioxidant proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。